Home
Class 12
MATHS
vectors veca=i-j+2k , vecb=2i+4j+k and v...

vectors `veca=i-j+2k , vecb=2i+4j+k` and `vecc=lambdai+j+muk` are mutually orthogonal then `(lambda,mu)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

vectors vec a=i-j+2k,vec b=2i+4j+k and vec c=lambda i+j+mu k are mutually orthogonal then (lambda,mu) is

If the vectors vec a = i-j+2k, vec b = 2i+4j+k and vec c = lambda i + j + mu k are mutually perpendicular then (lambda, mu) =

If the vectors vec a=hat i-hat j+2hat k.vec b=2hat i+4hat j+hat k and Longrightarrow lambdahat i+hat j+muhat k are mutually orthogonal,then (lambda,mu)Longrightarrow lambdahat i+hat j+muhat k

If vec a = i + lambda j + 2k, vec b = mui + j - k are orthogonal and |vec a| = |vec b| then (lambda, mu) =

If lambda (2i - 4j + 4k) is a unit vector then lambda =

Show that the points A, B and C with position vectors veca=3i-4j-4k,vecb=2i-j+k and vecc=i-3j-5k respectively form the vertices of a right angled triangle.