Home
Class 12
MATHS
If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(c...

If `x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t)` show that `dy/dx =0 at t=pi/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

x= sin^3t/sqrt x cos2t , y= cos^3t/ sqrt x cos2t .

If x=(sin^(3)t)/(sqrt(cos 2t)) and y=(cos^(3)t)/( sqrt(cos 2t)) , show that (dy)/(dx)=0 at t=(pi)/(6) .

x = (sin^3t)/(sqrt(cos 2t)), y = (cos^3 t)/(sqrt(cos 2t)) .

Find dy/dx if x = (sin^3t)/(sqrtcos2t), y = (cos^3t)/(sqrtcos2t)

If x=(sin^(3)t)/(sqrt(cos2t)) and y=(cos^(3)t)/(sqrt(cos2t)) , then find (dy)/(dx) .

If x=sin t sqrt(cos2t) and y=cos tsqrt(sin2t) , find (dy)/(dx) at t=(pi)/(4) .

x= a sin 2t(1 + cos2t) and y = b cos 2t(1- cos 2t) , show that [(dy/dx)_(t=pi/4) =b/a] .

If x= sqrta^(sin^-1t), y = sqrt(a^(cos^-1t)) , show that dy/dx = -y/x , a > 0