Home
Class 12
MATHS
" Q7.If "x sin(a+y)+sinacos(a+y)=0" with...

" Q7.If "x sin(a+y)+sinacos(a+y)=0" with "cos a!=+-1," prove that "(dy)/(dx)=(sin^(2)(a+y))/(sina)

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y=x cos(a+y), with cos a!=+-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If x sin (a + y) + sin a cos (a + y)= 0 , then prove that (dy)/(dx)= (sin^(2) (a + y))/(sin a)

If cos y=x cos(a+y), where cos a!=-1 prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a)

If cos y= x cos (a + y) , with cos a ne +- 1 , prove that (dy)/(dx) = (cos^(2) (a + y))/(sin a)

If sin y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If siny=xsin(a+y), prove that (dy)/(dx)=(sin^2(a+y))/(sina)