Home
Class 12
MATHS
If f(x) be a twice differentiable functi...

If `f(x)` be a twice differentiable function from `RR rarr RR` such that `t^(2)f(x)-2tf'(x)+f''(x)=0` has two equal values of for all `x` and `f(0)=1,f'(0)=2,` then `lim_(x rarr 0)((f(x)-1)/(x)-(t)/(2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) be a twice differentiable function from RR rarr RR such that t^(2)f(x)-2tf'(x)+f''(x)=0 has two equal values of t for all x and f(0)=1,f'(0)=2, then lim_(x rarr 0)((f(x)-1)/(x)-(t)/(2)) is

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

If f(x) is twice differentiable and f^('')(0) = 3 , then lim_(x rarr 0) (2f(x)-3f(2x)+f(4x))/x^(2) is

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is