Home
Class 11
MATHS
If ((log)a N)/((log)c N)=((log)a N-(log)...

If `((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N),w h e r eN >0a n dN!=1, a , b , c >0` and not equal to 1, then prove that `b^2=a c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ((log)_a N)/((log)_c N)=((log)_a N-(log)_b N)/((log)_b N-(log)_c N), where N >0 and N!=1, a , b , c >0,!=1 , then prove that b^2=a c

If (log_a N)/(log_c N)=(log_a N-log_b N)/(log_b N-log_c N) where N>0 and N!=1 a,b,c>0 and not equal to 1 , then prove that b^2=ac

If (log_(a)N)/(log_(c)N)=(log_(a)N-log_(b)N)/(log_(b)N-log_(c)N), where N>0 and N!=1,a,b,c>0 and not equal to 1, then prove that b^(2)=ac

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

Compute the following a^(((log)_b((log)_a N))/((log)_b(log a)))

Compute the following a^(((log)_b((log)_a N))/((log)_b a))

If (log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3 (where a , b , c are different positive real numbers !=1), then find the value of a b c .

Prove that ((log)_(a)N)/((log)_(ab)N)=1+(log)_(a)b

If (log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3 (where a , b , c are different positive real numbers !=1), then find the value of a b c dot