Home
Class 11
MATHS
" i) Show that "sin^(2)45^(@)-sin^(2)15^...

" i) Show that "sin^(2)45^(@)-sin^(2)15^(0)=(sqrt(3))/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)45^(@)-sin^(2)15^(0)=(sqrt(3))/(4)

Prove that, cos^(2)45^(@)-sin^(2)15^(@)=sqrt(3)/(4)

Show that sin^(2) 75^(@) - sin^(2) 15^(@) = (sqrt(3))/(2)

cos^(2) 45^(@) - sin^(2) 15^(@)=

Prove that: cos^2 45^0-sin^2 15^0=(sqrt(3))/4

Prove that cos^2 45^@-sin^2 15^@=sqrt3/4

Show that sin^(2)5^(@)+sin^(2)10^(0)+sin^(2)15^(0)+...+sin^(2)90^(@)=9(1)/(2)

Show that sin70^(0)cos10^(0)-cos70^(0)sin10^(0)=(sqrt(3))/(2)

The value of cos^(2)45^(@)-sin^(2)15^(@) is

Show that sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+.....+sin^(2)90^(@)=9(1)/(2)