Home
Class 12
MATHS
If A is a non-singular matrix then |A^(-...

If A is a non-singular matrix then `|A^(-1)|`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a 3xx3 non-singular matrix,then |A^(-1)adj(A)| is

If is a non-singular matrix, then det (A^(1))=

If A is a non-singular matrix such that A^(-1)=[(5,3),(-2,-1)], "then" (A^(T))^(-1) =

If A is a non-singular matrix, then A (adj.A)=

If A is a non singular matrix such that A^(-1)=[[7,-2],[-3,1]] then (A^(T))^(-1) is :

If P is a non-singular matrix, with (P^(-1)) in terms of 'P', then show that adj (Q^(-1) BP^-1) = PAQ . Given that (B) = A and abs(P) = abs(Q) = 1.

A and B are square matrices and A is non-singular matrix, then (A^(-1) BA)^n,n in I' ,is equal to (A) A^-nB^nA^n (B) A^nB^nA^-n (C) A^-1B^nA (D) A^-nBA^n

A and B are square matrices and A is non-singular matrix, then (A^(-1) BA)^n,n in I' ,is equal to (A) A^-nB^nA^n (B) A^nB^nA^-n (C) A^-1B^nA (D) A^-nBA^n