Home
Class 12
MATHS
" If "x^(2)+y^(2)=t+(1)/(t)quad x^(4)+y^...

" If "x^(2)+y^(2)=t+(1)/(t)quad x^(4)+y^(4)=t^(2)+(1)/(t^(2))" then "x^(3)y(dy)/(dx)=

Promotional Banner

Similar Questions

Explore conceptually related problems

if x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=?

If x^(2)+y^(2)=(t+(1)/(t)) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)), then x^(3)y(dy)/(dx)=

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then x^(3)y(dy)/(dx)=(a)0(b)1(c)-1(d) non of these

If x^(2) + y^(2) =t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) " then " x^(3)y (dy)/(dx) = ……

If x^(2) + y^(2) =t - (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) " then " x^(3)y (dy)/(dx) = ……

If x^(2) + y^(2) = t + (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) then (dy)/(dx) =

If x^(2) +y^(2) =t-(1)/(t) andx^(4) +y^(4) =t^(2) +(1)/( t^(2)),then (dy)/(dx) =

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) then (dy)/(dx)=

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that, x^(3)y(dy)/(dx)=1