Home
Class 12
MATHS
[" 14.Show that the points "A" ,"B" and ...

[" 14.Show that the points "A" ,"B" and "C" having position vectors "(i+2j+7k)" ,"],[(2i+6)+3hat k" ) and "(3hat i+10hat j-3hat k)" respectively,are collinear."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the points, A, B and C having position vectors (2hat(i)-hat(j)+hat(k)), (hat(i)-3hat(j)-5hat(k)) and (3hat(i)-4hat(j)-4hat(k)) respectively are the vertices of a rightangled triangle. Also, find the remaining angles of the triangle.

Show that the points A,B,C with position vectors (3hat(i)- 2 hat(j)+ 4hat(k)),(hat(i) + hat(j) +hat(k)) and (-hat(i)+ 4 hat(j)- 2 hat(k)) respectively are collinear.

Show that the points A,B and C whose position vectors are repectively 2 hat i+ hat j- hat k , 3 hat i- 2 hat j+ hat k and hat i+ 4 hat j- 3 hat k are collinear.

Show that the four points A,B,C and D with position vectors 4hat i+5hat j+hat k,-(hat j+hat k),3hat j+9hat j+4hat k and 4(-hat i+hat j+hat k) respectively are coplanar.

Show that the points A,B,C with position vectors 2hat i-hat j+hat k,hat i-3hat j-5hat k and 3hat i-4hat j-4hat k respectively,are the vertices of a right angled triangle.Also,find the remaining angles of the triangle.

Show that the points A,B and C with position vectors,vec a=3hat i-4hat j-4hat kvec b=2hat i-hat j+hat k and vec c=hat i-3hat j-5hat k respectively form the vertices of a right angled triangle.

If three points A, B and C with position vectors hat(i) + x hat(j) +3 hat(k) , 3 hat(i) + 4 hat(j) + 7hat( k) and y hat(i) - 2 hat(j) - 5 hat(k) respectively are collinear, then (x,y) =

The values of a for which the points A,B, and C with position vectors 2hat i-hat j+hat k,hat i-3hat j-5hat k, and ahat i-3hat j+hat k respectively,are the vertices of a right-angled triangle with C=(pi)/(2) are

Show that the points with the position vectors 2 hat i + 6 hat j + 3 hat k, hat i + 2 hat j + 7 hat k and 3 hat i + 10 hat j - hat k are collinear.

Show that the points with position vectors 2 hat i + 6 hat j + 3 hat k , hat i + 2 hat j + 7 hat k and 3 hat i + 10 hat j - hat k are collinear.