Home
Class 11
MATHS
a^(sqrt(0g(g)b))-b^(sqrt(bg(b)a))=...

a^(sqrt(0g_(g)b))-b^(sqrt(bg_(b)a))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a sqrt(log_(a)b)-b sqrt(log_(b)a)=0

Prove that a^(x)-b^(y)=0 where x=sqrt(log_(a)(b)&y)=sqrt(log_(b)(a)),a>0,b>0&a,b!=1

prove that a^(x)-b^(y)=0 where x=sqrt(log_(a)b) and y=sqrt(log_(b)a),a>0,b>0 and a,b!=1

If tanalpha=b/a a>b>0 and if 0

If tan alpha = b/a, a gt b gt 0 and if 0 lt alpha lt (pi)/(4) , then sqrt((a+b)/(a-b))- sqrt((a-b)/(a+b)) is equal to

If tan x=(b)/(a) " then " sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))=

If tan x=(b)/(a) then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))=

If tan x=(b)/(a) then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))=

If x=(sqrt(a+2b)-sqrt(a-2b))/(sqrt((a+2b))+sqrt((a-2b))) , show that bx^(2)-ax+b=0