Home
Class 12
MATHS
(root(3)(4)+(1)/(4sqrt(6)))^(20)...

(root(3)(4)+(1)/(4sqrt(6)))^(20)

Promotional Banner

Similar Questions

Explore conceptually related problems

In the expansion of (3sqrt(4)+(1)/(4sqrt(6)))^(20)

The number of rational terms in the expansion of (root (3)(4) + (1)/(root(4)(6)))^(20) is

The value of (root(6)(27)-sqrt(6(3)/(4)))^(2) equals

Calculate : {root(3)(4)xx(1)/(root(6)(8))xxroot(12)(2^(-1))}^(3/4) .

The ratio of the fifth term from the beginning to the fifth term from the end in the expansion of (root4(2)+(1)/(root4(3)))^(n) is sqrt6:1 If n=(20)/(lambda) , then the value of lambda is

sqrt((4)/(3))-sqrt((3)/(4))=?(4sqrt(3))/(6) (b) (1)/(2sqrt(3))(c)1(d)-(1)/(2sqrt(3))

(i) Simplify (2^(2/3)-2^((-2)/3))(2^(4/3)+1+2^((-4)/3)) (ii) [(root(6)(7))^(2)+(root(6)(7))^(-2)][(root(6)(7))^(4)-1+(root(6)(7))^(-4)]

Simplify : (root6(27)-sqrt(6(3)/4))^(2)