Home
Class 11
MATHS
[" If "],[qquad f(a)=2,f'(a)=1,g(a)=-1,g...

[" If "],[qquad f(a)=2,f'(a)=1,g(a)=-1,g'(a)=2" then "L_(x rarr0)(g(x)f(a)-g(a)f(x))/(x-a)=]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(0)=0=g(0) and f'(0)=6=g'(0)thenlim_(x rarr0)(f(x))/(g(x))=

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(1)=3 and f'(1)=6 , then lim_(x rarr0)(sqrt(1-x)))/(f(1))

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

f'(3)+f'(2)=0 Find the lim_(x rarr0)((1+f(3+x)-f(3))/(1+f(2-x)-f(2)))^((1)/(x))

Let f(x) be a quadratic function such that f(0)=f(1)=0&f(2)=1, then lim_(x rarr0)(cos((pi)/(2)cos^(2)x))/(f^(2)(x)) equal to

If (x)={x,x 0 and g(x)=f(x)+|x| then lim_(x rarr0^(+))(log_(|sin x|)x)^(g(x))=

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=