Home
Class 9
MATHS
( x+0 2 sin ar 2 x 1 x=0 2. f(x)= x=0...

( x+0 2 sin ar 2 x 1 x=0 2. f(x)= x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

ind the value of a and b if f(x) is continuous at x=0. If f(x)={(sin(a+1)x+2sin x)/(2),x 0}

If f(x)=(sin(x^(2)))/(x),x!=0,f(x)=0,x=0 then at x=0,f(x) is

If f(x) is continuous at x=0 , where f(x)={:{((cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1)", for " x!=0),(2k", for " x=0):} , then k=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)={:{(((e^(x)-1)^(4))/(sin(x^(2)/k^(2))log(1+ x^(2)/(2)))", for " x!=0),(8", for " x=0):} , then k=

f(x)=(1-cos alpha x)/(x sin x), for x!=0,(1)/(2), for x=0 If f is continuous at x=0, then

if f(x)=(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1),x!=0 and f(x)=k,x=0 is continuous at x=0 then k=