Home
Class 10
MATHS
sqrt(6)*sqrt(1-x^(4))dy=xdx...

sqrt(6)*sqrt(1-x^(4))dy=xdx

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(1-x^(6))dy=x^(2)dx

Solve the following differential equation: sqrt(1-x^(4))dy=xdx

If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))

If sqrt(1-x^(6))+sqrt(1-y^(6))=a(x^(3)-y^(3)), then prove that (dy)/(dx)=(x^(2))/(y^(2))sqrt((1-y^(6))/(1-x^(6)))

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6,)

If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)/(y^2)sqrt((1-y^6)/(1-x^6))

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))