Home
Class 11
MATHS
Show that the expression ((ax-b)(dx-c))/...

Show that the expression `((ax-b)(dx-c))/((bx-a)(cx-d))` will be capable of all values when `x` is real,if`(a^2-b^2) and (c^2-d^2)` ahve the same sign.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the expression ((ax-b)(dx-c))/((bx-a)(cx-d)) will be capable of all values when x is real if a^(2)-b2 and c^(2)-d^(2) have the same sign

Show that the expression ((ax-b)(dx-c))/((bx-a)(cx-d)) be capabie of all values when x is real, if a^2 - b^2 and c^(2)-d^(2) have the same sign.

Solve the equations : (b-ax)/(bx-a)=(d-cx)/(dx-c)

Let a, b, c be three distinct real numbers such that each of the expressions ax^+bx +c, bx^2 + cx + a and ax^2 + bx + c are positive for all x in R and let alpha=(bc +ca+ab)/(a^2+b^2+c^2) then (A)alpha 1/4 (D) alpha>1

If (a-bx)/(a+bx)=(b-cx)/(b+cx)=(c-dx)/(c+dx) show that a,b,c , d are in G.P.

If (x-2) is a common factor of the expressions x^(2)+ax+b and x^(2)+cx+d , then (b-d)/(c-a) is equal to

If (x-2) is a common factor of the expressions x^(2)+ax+b and x^(2)+cx+d , then (b-d)/(c-a) is equal to

If (x-2) is a common factor of the expressions x^(2)+ax+b and x^(2)+cx+d , then (b-d)/(c-a)

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.