Home
Class 11
PHYSICS
दो परस्पर लम्बवत वेक्टरो vec(P) तथा vec(...

दो परस्पर लम्बवत वेक्टरो `vec(P)` तथा `vec(Q)` के परिमाण क्रमशः 3 तथा 4 है नामांकित वेक्टर आरेख बनाकर `vec(P)+vec(Q)` तथा `vec(P)-vec(Q)` बनाकर तथा का परिमाण ज्ञात कीजिये

Promotional Banner

Similar Questions

Explore conceptually related problems

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

What can be the angle between (vec(P)+vec(Q)) and (vec(P)-vec(Q)) ?

What can be the angle between (vec(P) + vec(Q)) and (vec(P) - vec(Q)) ?

What can be the angle between (vec(P) + vec(Q)) and (vec(P) - vec(Q)) ?

What is the angle between (vec(P)+vec(Q)) and (vec(P)xxvecQ)?

Prove that [vec(p) - vec(q) vec(q) - vec(r) vec(r) - vec(p)] = 0

If vec(P).vec(Q)= PQ , then angle between vec(P) and vec(Q) is

If vec(P).vec(Q)= PQ , then angle between vec(P) and vec(Q) is

If |vec(P) + vec(Q)| = |vec(P) - vec(Q)| , find the angle between vec(P) and vec(Q) .