Home
Class 14
MATHS
int(x^((1)/(2)+1)sqrt(n^(2)+1))...

int(x^((1)/(2)+1)sqrt(n^(2)+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(2)(1)/(x sqrt(x^(2)-1))dx=

int(1)/((1-x^(2))sqrt(1+x^(2)))

If I_(n)=int(x^(n)dx)/(sqrt(x^(2)+a)) then prove that I_(n)+(n-1)/(n)al_(n-2)=(1)/(n)x^(n-1)*sqrt(x^(2)+a)

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

int(1)/(1-x^(2)) sqrt(1-x^(2))dx

int_(1/2)^(1)(1)/(sqrt(1-x^(2)))dx=

If I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx then which one of the following is not true ?

If I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx then which one of the following is not true ?

int(x^(n-1))/(sqrt(1+4x^(n)))dx