Home
Class 11
MATHS
cot(pi/24)=sqrt(a)+sqrt(b)+sqrt(c)+sqrt(...

`cot(pi/24)=sqrt(a)+sqrt(b)+sqrt(c)+sqrt(d) ` when `a < b < c < d` then `a+b+c-d`

Promotional Banner

Similar Questions

Explore conceptually related problems

cot((pi)/(24))=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Prove that: cot(pi)/(24)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Prove that: "cot"pi/(24)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Prove that, cot""(pi)/(24)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)

Let a,b,c,d,A,B,C,D in R . If A/a = B/b = C/c = D/d then (sqrt(Aa) + sqrt(Bb) + sqrt(Cc) + sqrt(Dd)) / (sqrt(a+b+c+d) sqrt(A+B+C+D))=

If A/a = B/b = C/c= D/d then prove that sqrt(Aa)+sqrt(Bb)+sqrt(Cc)+sqrt(Dd)= sqrt((a+b+c+d)(A+B+C+D))

If a and b are positive natural numbers (sqrt(a)+sqrt(b))(sqrt(c)+sqrt(d))=sqrt(ac)+sqrt(ad)+sqrt(bc)+sqrt(bd)

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))