Home
Class 12
MATHS
lim(x-gta)(asinx-xsina)/(a x^2-x a^2)...

`lim_(x-gta)(asinx-xsina)/(a x^2-x a^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of : lim_(xrarra)(xsina-asinx)/(x-a)

Evaluate the limits: lim_(xrarra)(xsina-asinx)/(x-a)

Evaluate lim_( x to 2) (x-2)/( x^2 -x-2)

If lim_(xrarr0)(2asinx-sin2x)/tan^3x exists and is equal to 1, then thee value of a is

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

If L=lim_(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4) exists and is finie then a=, b=, c= L=

lim_(xtoinfty)(x^2-x)/([x^2-x]

If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a and L