Home
Class 12
MATHS
[" Let "f(x)" be a quadratic polynomial ...

[" Let "f(x)" be a quadratic polynomial such that "],[f(-1)+f(2)=0" .If one of the roots of "f(x)=0],[" is "3" ,then its other root lies in : "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a quadratic expression such that f(-1)+f(2)=0 . If one root of f(x)=0 is 3 , then the other root of f(x)=0 lies in (A) (-oo,-3) (B) (-3,oo) (C) (0,5) (D) (5,oo)

Let f(x) be a quadratic expression such that f(-1)+f(2)=0 . If one root of f(x)=0 is 3 , then the other root of f(x)=0 lies in (A) (-oo,-3) (B) (-3,oo) (C) (0,5) (D) (5,oo)

Let f(x) be a quadratic expression such that f(-1)+f(2)=0 . If one root of f(x)=0 is 3 , then the other root of f(x)=0 lies in (A) (-oo,-3) (B) (-3,oo) (C) (0,5) (D) (5,oo)

Let f(x) be a quadratic expression such that f(-1)+f(2)=0 . If one root of f(x)=0 is 3 , then the other root of f(x)=0 lies in (A) (-oo,-3) (B) (-3,oo) (C) (0,5) (D) (5,oo)

Let f(x) be a quadratic expression such that f(-1)+f(2)=0 . If one root of f(x)=0 is 3 , then the other root of f(x)=0 lies in (A) (-oo,-3) (B) (-3,oo) (C) (0,5) (D) (5,oo)

Let f(x) be a polynomial such that f(-1/2)=0

Let f(x) be a quadratic expression such that f(0) +f(1) =0 . If f(-2) =0 then

Let f(x) be a quadratic polynomial satisfying f(2) + f(4) = 0. If unity is one root of f(x) = 0 then find the other root.

Let f(x) be a quadratic polynomial satisfying f(2) + f(4) = 0. If unity is one root of f(x) = 0 then find the other root.

Let f(x) be a quadratic polynomial satisfying f(2) + f(4) = 0. If unity is one root of f(x) = 0 then find the other root.