Home
Class 11
MATHS
" The sum of series "i^(2)+i^(4)+i^(6)+....

" The sum of series "i^(2)+i^(4)+i^(6)+......(2n+1)" terms "

Promotional Banner

Similar Questions

Explore conceptually related problems

i^(2)+i^(4)+i^(6)+ldots . .(2 n+1) terms =

Simplifiy i^(2)+i^(4)+i^(6)+.....+(2n+1) terms

Fill in the blanks of the following The sum of the series i+i^(2)+i^(3)+i^(4)+.... upto 1000 terms is ....

1+i^(2)+i^(4)+i^(6)+... .+i^(2 n)=

i^2+i^4+i^6+….........upto (2n+1) terms=

If (i)^(2) = -1, (i)^(2) + (i)^(4) + (i)^(6) + ...... to (2n + 1) terms =

The sum of the series i+2i^(2)+3i^(3)+... up to 200 terms equals

1 + i^(2n) + i^(4n) + i^(6n)

The value of i^(2)+i^(4)+i^(6)+i^(8)... upto (2n+1) terms,where i^(2)=-1, is equal to: