Home
Class 12
MATHS
tan^(-1)[(x^(1/3)+a^(1/3))/(1-x^(1/3)a^(...

tan^(-1)[(x^(1/3)+a^(1/3))/(1-x^(1/3)a^(1/3))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1){(x^(1//3)+a^(1//3))/(1-(a x)^(1//3))} with respect to x

Differentiate tan^(-1){(x^(1/3)+a^(1/3))/(1-(ax)^(1/3))} with respect to x]} with

Tan^(-1)((3x-x^(3))/(1-3x^(2)))=

tan^(-1)((3x-x^(3))/(1-3x^(2)))

If: tan^(-1)(1/3) + tan^(-1)( 3/4) - tan^(-1)(x/3) =0 , then: x=

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

int(x^(4)+1)/(x^(6)+1)dx(1)tan^(-1)x-tan^(-1)x^(3)+c(2)tan^(-1)x-(1)/(3)tan^(-1)x^(3)+c(3)tan^(-1)x+tan^(-1)x^(3)+c(4)tan^(-1)x+(1)/(3)tan^(-1)x^(3)+c