Home
Class 12
MATHS
Evaluate: int-100^100 Sgn(x-[x])dx, wher...

Evaluate: `int_-100^100 Sgn(x-[x])dx`, where `[x]` denotes the integral part of `x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(-1)^(15) sgn(x-[x])dx

Show that: int_0^[x] (x-[x])dx=[x]/2 , where [x] denotes the integral part of x .

int_(-1)^(10)sgn(x-[x])dx=

Show that: int_0^[[x]] (x-[x])dx=[[x]]/2 , where [x] denotes the integral part of x .

Evaluate int_(0)^(100)[tan^(-1)x] dx where [ ] denotes the GIF

Evaluate int_(0)^(100)2^(x-[x])dx

Evaluate int_0^100 (x-[x]) dx

Evaluate int_(0)^(100)e^(x-[x])dx where [ ] denotes the greatest integer function.

Show that: int_0^x[x]dx=[x]([x]-1)/2+[x](x-[x]) , where [x] denotes the integral part of x .