Home
Class 11
MATHS
[" The value of "x" satisfying the equat...

[" The value of "x" satisfying the equation "],[(6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b+3c)/(2x+6a-b-3c)]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation (6x+2a+3b+c)/(6x+2a-3b-c)=(2x+6a+b-3c)/(2x+6a-b-3a) is ab/c b.2ab/c c.ab/3c d.ab/2c

The roots of the quadratic equation x^2+6x+5=0 a)5,-1 b)2,3 c)6,-1 d)-2,-3

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a ,b ,c are non zero rational no then prove roots of equation (a b c^2)x^2+3a^2c x+b^2c x-6a^2-a b+2b^2=0 are rational.

If a ,b ,c are non zero rational no then prove roots of equation (a b c^2)x^2+3a^2c x+b^2c x-6a^2-a b+2b^2=0 are rational.

If a ,b ,c are non zero rational no then prove roots of equation (a b c^2)x^2+3a^2c x+b^2c x-6a^2-a b+2b^2=0 are rational.

If a, b and c satisfy the equation x^(3)-3x^(2) + 2x+1 =0 then what is the value of (1)/(a)+(1)/(b)+(1)/(c ) ?