Home
Class 12
MATHS
(1+y^(2))tan^(-1)xdx+2y(1+x^(2))dy=0...

(1+y^(2))tan^(-1)xdx+2y(1+x^(2))dy=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equation: (1+y^(2))tan^(-1)dx+2y(1+x^(2))dy=0

Solve the following differential equation: (1+y^2)tan^(-1)x dx+2y(1+x^2)dy=0

Solve the following differential equation: (1+y^2)tan^(-1)dx+2y(1+x^2)dy=0

The solution of the differential equation (1+y^(2)) tan^(-1) x dx + y(1+x^(2)) dy = 0 is

The solution of (1 + y^(2)) dx = (Tan^(-1) y -x) dy is

Solve :(1+y^(2))dx=(tan^(-1)y-x)dy

Solve the following differential equations (i) (1+y^(2))dx = (tan^(-1)y - x)dy (ii) (x+2y^(3))(dy)/(dx) = y (x-(1)/(y))(dy)/(dx) + y^(2) = 0 (iv) (dy)/(dx)(x^(2)y^(3)+xy) = 1

If : y=(1+x^(2))*tan^(-1)x-x," then: "(dy)/(dx)=

If x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y^(2) )+cot ^(-1) sqrt(x^(2) +y^(2)),then (dy)/(dx)=

Solve the following differential equations: (1+y^2)xdx+2y(1+x^2)dy=0 .