Home
Class 12
MATHS
[" 14."],[" 14."]|[a^(2)+1,ab,ac],[ab,b^...

[" 14."],[" 14."]|[a^(2)+1,ab,ac],[ab,b^(2)+1,bc],[ca,cb,c^(2)+1]|=1+a^(2)+b^(2)+c^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

Prove that |[-a^(2),ab,ac],[ba,-b^(2),bc],[ca,cb,-c^(2)]|=4a^(2)b^(2)c^(2)

By using properties of determinants , show that : {:[( a^(2) + 1, ab,ac),(ab,b^(2) + 1,bc),( ca, cb, c^(2) +1) ]:}= 1+a^(2) +b^(2) +c^(2)

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2

Prove that |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=1+a^2+b^2+c^2

Prove that abs{:(a^(2) + 1, ab , ac),(ab, b^(2) + 1, bc),(ca, cb, c^(2) +1):}=1 + a^(2) + b^(2) +c^(2)

abs([-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]) = 4a^2.b^2.c^2

Show that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ca,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2)

Using the properties of determinant, prove that |(a^(2) +1, ab, ac),(ab, b^(2) + 1, bc),(ac, bc, c^(2)+1)| = 1+a^(2) + b^(2) + c^(2) .