Home
Class 12
MATHS
" * b) "C=(-a,-b),r=sqrt(a^(2)-b^(2))(|a...

" * b) "C=(-a,-b),r=sqrt(a^(2)-b^(2))(|a|>|b|)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the circle with centre C and radius r where (i) C(-1,b),r=a+b (ii) C=(-a,-b),r=sqrt(a^(2)-b^(2))(|a|gt|b|) (iii) C=(cos theta, sin theta),r=1 (iv) C=(-7,-3),r=4 (v) C-(-1/2,-9),r=5 (vi) C=(1,7),r=5/2 (vii) C=(0,0),r=8 (vii) C=(2,-3),r=4 (ix) C=(-1,2),r=5

Find the equation of the circle with centre C and radius r where C = (-a,-b) , r = sqrt(a^(2) -b^(2)) (|a||gt|b|)

Find the equation of the circle with centre C and redius r where. C=(-a,-b),r=sqrt(a^(2)-b^(2)) (abs(a)gtabs(b))

If a : b = c : d , then prove that (a + c) : (b + d) = sqrt(a^(2) - c^(2)) : sqrt(b^(2) - d^(2))

If (a)/(b) = (c)/(d) , show that : (a + b) : (c + d) = sqrt(a^(2) + b^(2)) : sqrt(c^(2) + d^(2))

A: int (1)/(3+2 cos x)dx=(2)/(sqrt(5))"Tan"^(-1)((1)/(sqrt(5))"tan" (x)/(2))+c R: If a gt b then int (dx)/(a+b cosx)=(2)/(sqrt(a^(2)-b^(2)))Tan^(-1)[(sqrt(a-b))/(a+b)"tan"(x)/(2)]+c

(a+sqrt(a^(2)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)))

The value of (a+sqrt((a)-b^(2)))/(a-sqrt(a^(2)-b^(2)))+(a-sqrt(a^(2)-b^(2)))/(a+sqrt(a^(2)-b^(2)) is

If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

(sqrt(a^(2)-b^(2))+a)/(sqrt(a^(2)+b^(2))+b)-:(sqrt(a^(2)+b^(2))-b)/(a-sqrt(a^(2)-b^(2)))