Home
Class 10
PHYSICS
A Stone dropped from top of a well reach...

A Stone dropped from top of a well reaches the surface of water in 2 seconds, find the velocity of stone while it touches the surface of water and what is the depth of the water surface from top of well (`g=10m//s^(2)`) (Using V = U + at, S = Ut + `1//2at^(2)`)

Promotional Banner

Similar Questions

Explore conceptually related problems

A stone allowed to fall from the top of a well hit the water surface after 1 second. find out: the velocity with which of stone hit the water surface.

A stone dropped from top of a building reaches the ground in 7 seconds. The height of tower is ............... m (take g=10m/s^2)

A stone allowed to fall from the top of a well hit the water surface after 1 second. find out: the distance between the top of the well and the water surface.

A stone is dropped into a well. If the depth of water below the top be h and velocity of sound is v then the splash in water is heard after T sec. Then:

A stone is dropped into a well. If the depth of water below the top be h and velocity of sound is v then the splash in water is heard after T sec. Then:

A stone on a bridge on a river falls into the river. If it takes 3 seconds to reach the surface of water, find (i) velocity of the stone at the instant it touches the surface of water (ii) the height of the bridge from the surface of water.

Solve the following examples / numerical problems: A stone on a bridge on a river falls into the river. If it takes 3 seconds to reach the surface of water, find (i) the velocity of the stone at the instant it touches the surface of water (ii) the height of the bridge from the surface of water.

A stone is dropped freely from the top of a tower and it reaches the ground in 4 s. Taking g = 10 m s^(-2) , calculate the height of the tower.

A stone is dropped from the top of a tower and one second later, a second stone is thrown vertically downward with a velocity 20 ms^-1 . The second stone will overtake the first after travelling a distance of (g=10 ms^-2)

A stone is dropped from the top of a tower and one second later, a second stone is thrown vertically downward with a velocity 20 ms^-1 . The second stone will overtake the first after travelling a distance of (g=10 ms^-2)