Similar Questions
Explore conceptually related problems
Recommended Questions
- If z!=0 be a complex number and a rg(z)=pi/4, then R e(z)=I m(z)on l ...
Text Solution
|
- For any complex number z, prove that: (i) -|z| le R(e)(z)le|z| (ii...
Text Solution
|
- If z=[(sqrt(3)/2)+i/2]^5+[((sqrt(3))/2)-i/2]^5 , then a. R e(z)=0 b. I...
Text Solution
|
- For any complex number z prove that |R e(z)|+|I m(z)|<=sqrt(2)|z|
Text Solution
|
- If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors...
Text Solution
|
- If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.
Text Solution
|
- If |z-i R e(z)|=|z-I m(z)| , then prove that z , lies on the bisectors...
Text Solution
|
- For any complex number z prove that |R e(z)|+|I m(z)|<=sqrt(2)|z|
Text Solution
|
- If z = (2-i)/(i), then R e(z^(2)) + I m(z^(2)) is equal to a)1 b)-1 c)...
Text Solution
|