Home
Class 11
MATHS
If z!=0 be a complex number and a rg(z)=...

If `z!=0` be a complex number and `a rg(z)=pi/4,` then `R e(z)=I m(z)on l y` `R e(z)=I m(z)>0` `R e(z^2)=I m(z^2)` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If z!=0 be a complex number and arg(z)=(pi)/(4), then Re(z)=Im(z) only Re(z)=Im(z)>0Re(z^(2))=Im(z^(2))(d) None of these

If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.

If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.

If z!=0 is a complex number, then prove that R e(z)=0 rArr Im(z^2)=0.

For any complex number z prove that |R e(z)|+|I m(z)|<=sqrt(2)|z|

For any complex number z prove that |R e(z)|+|I m(z)|<=sqrt(2)|z|

For any complex number z prove that |R e(z)|+|I m(z)|<=sqrt(2)|z|

For any complex number z prove that |R e(z)|+|I m(z)|<=sqrt(2)|z|

If z be any complex number (z!=0) then arg((z-i)/(z+i))=(pi)/(2) represents the curve

If z be any complex number (z!=0) then arg((z-i)/(z+i))=pi/2 represents the curve