Home
Class 11
MATHS
if the roots of (a^2+b^2)x^2-2b(a+c)+(b^...

if the roots of `(a^2+b^2)x^2-2b(a+c)+(b^2+c^2)=0` are equal then a,b,c are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of (a^2+b^2 ) x^2 -2b(a+c)x+(b^2 +c^2 ) =0 are equal then a, b, c are in

if the roots of (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are real and equal then a,b,c are in

IF the roots of a(b-c)x^2+b (c-a) x+c (a-b) =0 are equal then a, b, c are in

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then (a) 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

IF the roots of (b-c) x^2+ (c-a) x+ (a-b) =0 are equal then a, b,c are in

Assertion (A): If the roots of (a^(2)+b^(2))x^(2)-2b(a+c)x+ (b^(2)+c^(2))=0 are real and equal then a, b, c are in G.P. Reason (R): If the sum of two non-negative reals is zero then each of them is zero.