Home
Class 11
MATHS
if a>0 , c>0 , b = sqrt(ac) , a!=1 , c!=...

if `a>0 , c>0 , b = sqrt(ac) , a!=1 , c!=1 , ac!=1,` and `n > 0` then the value of `(log a^n - log b^n)/(logb^n - logc^n)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

if quad 0,c>0,b=sqrt(ac),a!=1,c!=1,ac!=1a>dn>0 then find an expression for (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) in terms of log_(a)n and log_(c)n

Find the value of log((a^n)/(b^n)) + log((b^n)/(c^n)) + log((c^n)/(a^n))

The value of a^((log_b(log_b N))/(log_b a)), is

If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0 , then prove that (log_(a)N)/(log_(c )N) = (log_(a)N - log_(b)N)/(log_(b)N - log_(c )N) .

If a gt 0, c gt 0 , " b " = sqrt(ac) and " ac " ne 1 , N gt 0 , then (log_(a) N - log_(b) N)/(log_(b) N - log_(c) N) =

The value of log_a b log_b c log_c a is ………………. .

If agt0,cgt0,b=sqrt(ac),a,c and ac ne 1 , N gt0 prove that (log_(a)N)/(log_(c )N)=(log_(a)N-log_(b)N)/(log_(b)N-log_(c )N)

If a ,b ,c are in G.P., then prove that loga^n ,logb^n ,logc^n are in A.P.