Home
Class 11
MATHS
If the fundamental period of the functio...

If the fundamental period of the function cos(cos x)+sin(cos x) is `(k pi)/(2)` ,then the value of k=

Promotional Banner

Similar Questions

Explore conceptually related problems

The least period of the function f(x)=cos(cos x)+sin(cos x)+sin4x is (k pi)/(2), then the value of k is

The fundamental period of the function f(x)=|sin2x|+|cos2x| is

Fundamental period of the function f(x) = cos (sinx) + cos(cosx) is :

If the fundamental period of function f(x)=sin x+cos(sqrt(4-a^(2)))x is 4 pi, then the value of a is/are

Find the fundamental period of f(x)=cos x cos2x cos3x

Fundamental period of (sin x)^(@)+(cos x)^(@) is

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

If period of function f(x)=(2sin x)/(sin((x)/(2))) is k pi then value of k is