Home
Class 11
MATHS
If alpha is a root of the equation sin x...

If `alpha` is a root of the equation `sin x+1=x` then ,`lim_(x rarr a)[(min(sin x,{x}))/(x-1)]` is Where `[*]rarr` denotes greatest integer function and `{x}rarr` fractional part of `x` .

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

The value of lim_(x rarr1)[sin^(-1)x] is : (Where [.) denotes greatest integer function).

lim_(x rarr0)(a^(sin x)-1)/(sin x)

lim_(x rarr0)sin^(-1)((sin x)/(x))

lt_(x rarr0)[(sin|x|)/(x)]= where [^(*)] denotes greater integer function )

The value of lim_(x rarr0)[(x^(2))/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

lim_(x rarr0)((sin x)/(x))^((1)/(x))