Home
Class 11
MATHS
cos x+cos^(2)x=1 then sin^(8)x+2sin^(6)x...

`cos x+cos^(2)x=1` then `sin^(8)x+2sin^(6)x+sin^(4)x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x+sin^(2)x=1, then cos^(8)x+2cos^(6)x+cos^(4)x=(A)2(B)1(C)3 (D) (1)/(2)

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

If cos x + cos^(2)x =1 , then the value of sin^(12)x + 3 sin^(10)x + 3sin^(8)x + sin^(6)x -1 is:

If cos x + cos^(2) x =1 then the value of sin^(12) x + 3 sin^(10) x + 3 sin^(8) x + sin^(6) x -1 is

" If "cos x+cos^(2)x+cos^(3)x=1" ,then the value of "sin^(6)x-4sin^(4)x+8sin^(2)x" is"

sin x+sin^(2)x=1, then value of cos^(6)x+cos^(2)x-sin x is

prove that sin^(8)x-cos^(8)x=(sin^(2)x-cos^(2)x)(1-2sin^(2)x cos^(2)x)