Home
Class 11
MATHS
Let bar(a),bar(b) and bar(c) be non - ze...

Let `bar(a),bar(b)` and `bar(c)` be non - zero vectors `bar(V)_(1)=bar(a)times(bar(b)timesbar(c))` and `bar(V)_(2)=(bar(a)timesbar(b))timesbar(c)` vectors `bar(V)_(1)` and `bar(V)_(2)` are equal then

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

Let bar(a),bar(b),bar(c) be three non-zero vectors such that bar(a)+bar(b)+bar(c)=0 .Then lambda(bar(a)timesbar(b))+bar(c)timesbar(b)+bar(a)timesbar(c)=0 where lambda is

Let bar(a) , bar(b) and bar(c) be non-zero vectors such that (bar(a)timesbar(b))timesbar(c)=(1)/(3)|bar(b)||bar(c)|bar(a) ..If theta is the acute angle between the vectors bar(b) and bar(c) then sin theta=2k then k=

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If bar(a),bar(b),bar(c) are non-zero,non-coplanar vectors then {bar(a)times(bar(b)+bar(c))}times{bar(b)times(bar(c)-bar(a))} is collinear with the vector

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

Let bar(a)=hat j-hat k and bar(c)=hat i-hat j-hat k then the vector bar(b) satisfying bar(a)timesbar(b)+bar(c)=0 and bar(a).bar(b)=3 is