Home
Class 12
MATHS
If f(x)=px^(2)+qx+r and f(-2)=11,f(-1)=6...

If `f(x)=px^(2)+qx+r` and f(-2)=11,f(-1)=6,f(1)=2 then the minimum value of f(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x+1)/(x-1) , then the value of f(f(2)) is

If f(x)=x^(2), find (f(1.1)-f(1))/(1.1-1)

If f(x)=x^(2) find (f(1.1)-f(1))/((1.1-1))

Consider a differentiable f:R to R for which f(1)=2 and f(x+y)=2^(x)f(y)+4^(y)f(x) AA x , y in R. The minimum value of f(x) is

Let F:R to R be such that F for all x in R (2^(1+x)+2^(1-x)), F(x) and (3^(x)+3^(-x)) are in A.P., then the minimum value of F(x) is:

f(x)=x^(2), find (f(1.1)-f(1))/(1.1-1)

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

Let f(x) be a polynomial of degree 4 on R such that lim_(x rarr1)(f(x))/((x-1)^(2))=1 If f'(0)=-6 and f'(2)=6, then find global maximum value of f(x) in [(1)/(2),2]

Let f(x) be a polynomial satisfying lim_(xtooo) (x^(2)f(x))/(2x^(5)+3)=6" and "f(1)=3,f(3)=7" and "f(5)=11. Then The value of f(0) is