Home
Class 12
MATHS
The given circle x^(2)+y^(2)+2px=0,p in ...

The given circle `x^(2)+y^(2)+2px=0`,`p in R` touches the parabola `y^(2)=-4x` externally then p =

Promotional Banner

Similar Questions

Explore conceptually related problems

The circle x^(2)+y^(2)+2lamdax=0,lamdainR touches the parabola y^(2)=4x externally. Then

If the circle x^(2)+y^(2)+2ax=0, a in R touches the parabola y^(2)=4x , them

The circle x^(2)+y^(2)+2lamdax=0,lamdainR , touches the parabola y^(2)=4x externally. Then,

The circle x^(2)+y^(2)+2 lambda x=0,lambda in R, touches the parabola y^(2)=4x externally.Then,lambda>0 (b) lambda 1(d) none of these

The circle x^(2)+y^(2)-2x-6y+2=0 intersects the parabola y^(2)=8x orthogonally at the point P. The equation of the tangent to the parabola at P can be

The circle x^(2)+y^(2)+4 lambda x=0 which lambda in R touches the parabola y^(2)=8x The value of lambda is given by

Let P be a variable point.From P tangents PQ and PR are drawn to the circle x^(2)+y^(2)=b^(2) if QR always touch the parabola y^(2)=4ax then locus of P is

The normal to the ellipse 4x^(2)+5y^(2)=20 at the point P touches the parabola y^(2)=4x .The eccentric angle of the point P is: