Home
Class 12
MATHS
The circle x^(2)+y^(2)-4x+8y+5=0 touches...

The circle `x^(2)+y^(2)-4x+8y+5=0` touches the line 3x-4y=m then sum of the absolute value of m

Promotional Banner

Similar Questions

Explore conceptually related problems

Circle x^(2) + y^(2) - 8x + 4y + 4 = 0 touches

If the circle x^(2)+y^(2)-4x-8y-5=0 intersects the line 3x-4y=m at two distinct points,then find the values of m.

If the circle x^(2)+y^(2)=4x+8y+5 intersects the line 3x-4y=m at two distinct points, then the number of possible integral values of m is equal to

If the line 3x-4y-lambda=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 at (a,b) then which of the following is not the possible value of lambda+a+b?

If the straight line ax+by=2;a,b!=0 touches the circle x^(2)+y^(2)-2x=3 and is normal to the circle x^(2)+y^(2)-4y=6 ,then the values of 'a' and 'b'are?

If the line 3x-4y-k=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 at (a,b), then the positive integral value of (k+a+b)/(5)=

If the circle x^(2)+y^(2)+8x-4y+c=0 touches the circle x^(2)+y^(2)+2x+4y-11=0 externally and cuts the circle x^(2)+y^(2)-6x+8y+k=0 orthogonally then k