Home
Class 11
MATHS
If alpha,beta are the roots of ax^(2)+bx...

If `alpha,beta` are the roots of `ax^(2)+bx+c=0` and `c!=0` .then the value of `(1)/((a alpha+b)^(2))+(1)/((a beta+b)^(2))` in terms of `a,b,c` is

Promotional Banner

Similar Questions

Explore conceptually related problems

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

If alpha and beta are roots of ax^(2)+bx+c=0 and a+c=b then the roots are

If alpha,beta are the roots of ax^(2)+bx+c=0 then the value ((alpha)/(beta)-(beta)/(alpha))^(2) is ...

37. If alpha and beta are the roots of ax^(2)+bx+c=0, then the value of (a alpha+b)^(-2)+(a beta+b)^(-2) is equal to

" If "alpha,beta" are roots of "ax^(2)+bx+c=0,a!=0" then the value of "(a^(2)+beta^2)/(alpha^(-2)+beta^(-2))=

33. If alpha and beta are the root of ax^(2)+bx+c=0. then the value of the value of {(beta)/(a alpha+b)+(alpha)/(a beta+b)} is

If alpha and beta are the roots of ax^(2)+bx+c=0 then the value of the expression (a alpha+b)^(-3)+(a beta+b)^(-3) is equal to