Home
Class 12
MATHS
3f(x)-f(1/x)=log(e)x^(4)(xgt0), then f(1...

`3f(x)-f(1/x)=log_(e)x^(4)(xgt0)`, then `f(10^(-x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3 f(x) - f((1)/(x) ) = log x^(4) , then f(e^(-x)) is

If f(x)=log_(x)(log_(e)x) , then f'(x) at x=e is equal to

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

f(x)=log_(e)|x|,xne0, then f'(x) is equal to

IF f(x)=1/(x+1)-log(1+x),xgt0 , then f is

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=(log)_x(logx) , then f'(x) at x=e is equal to......

If f(x)=log_(e)((1-x)/(1+x)),|x|<1, then f((2x)/(1+x^(2))) is equal to:

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to