Home
Class 12
MATHS
The fundamental period of tan(x+8x+27x+....

The fundamental period of tan(x+8x+27x+...+`n^(3)`x) is `(k pi)/(n^(2)(n+1)^(2))` then k=

Promotional Banner

Similar Questions

Explore conceptually related problems

The period of sin(x+8x+27x+...+n^(3)x) is

" If the period of "sin(x+8x+27x+......n^(3)x)" is "(k pi)/(n^(2)(n+1)^(2))" then "k=

Period of tan(x+4x+9x+....n^(2)x) is

If the fundamental period of the function cos(cos x)+sin(cos x) is (k pi)/(2) ,then the value of k=

The fundamental period of sin backslash(2x)/(3)+cos4x+|tan3x|+sgn backslash(x^(2)+4x+15) is k pi, then value of k is

If f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)) then

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The period of f(x)=sin((pi x)/(n-1))+cos((pi x)/(n)),n in Z,n>2

Solve for x when tan^(-1)2x+tan^(-1)3x=n pi+(3 pi)/(4)

period the function f(x)=(sin{sin(nx)})/(tan((x)/(n))),nin N, is 6 pi then n=...