Home
Class 12
MATHS
Over the interval ((1)/(2013 pi),(1)/(20...

Over the interval `((1)/(2013 pi),(1)/(2007 pi))` ,the function `(cos x)/(sin((1)/(x)))` is discontinuous at K points then K must be equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the fundamental period of the function cos(cos x)+sin(cos x) is (k pi)/(2) ,then the value of k=

If the function f(x)={((sqrt(2+cosx)-1)/(pi-x)^2 ,; x != pi), (k, ; x = pi):} is continuous at x = 1, then k equals:

f(x)={(sin(cos x)-cos x)/((pi-2x)^(2)),x!=(pi)/(2);k,x=(pi)/(2) is continuous at x=(pi)/(2), then k is equal to 0 (b) (1)/(2)(c)1(d)-1

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

The least period of the function f(x)=cos(cos x)+sin(cos x)+sin4x is (k pi)/(2), then the value of k is

If the sum of all the solutions of the equation 8cos x*(cos((pi)/(6)+x)cos((pi)/(6)-x)-(1)/(2))=1 in [0,pi] is k pi then k is equal to