Home
Class 11
MATHS
"Value of "sin(2sin^(-1)((4)/(5)))+sin(c...

`"Value of "sin(2sin^(-1)((4)/(5)))+sin(cos^(-1)((3)/(5)))=(a)/(b)quad` (G.C.D of `(a,b)=1)` .Then `a+b=``

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

The value of cos^(-1)(cos(5pi)/3)+sin^(-1)(sin(5pi)/3) is pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

The value of alpha such that sin^(-1)(2)/(sqrt(5)),sin^(-1)(3)/(sqrt(10)),sin^(-1)alpha are the angles of a triangle is (-1)/(sqrt(2))quad ( b ) (1)/(2)(c)(1)/(sqrt(3))(d)(1)/(sqrt(2))

The value of int(cos^4xdx)/(sin^3x(sin^5x+cos^5x)^(3//5))=-(1)/(2)(1+g(x))^(2//5)+C where g (x) is :

(sin^(-1)(3x))/(5)+(sin^(-1)(4x))/(5)=sin^(-1)x, then roots of the equation are- a.0 b.1 c.-1 d.-2

The value of cos[(1)/(2)cos^(-1)cos((14 pi)/(5))]is(a)cos((2 pi)/(5))(b)cos(-(7 pi)/(5))(c)sin((pi)/(10))(d)-cos((3 pi)/(5))

If (sin^(4)A)/(a)+(cos^(4)A)/(b)=(1)/(a+b), then the value of (sin^(8)A)/(a^(3))+(cos^(8)A)/(b^(3)) is equal to (A) (1)/((a+b)^(3)) (B) (a^(3)b^(3))/((a+b)^(3))(C)(a^(2)b^(2))/((a+b)^(2)) (D) none of these

cos(A-D)sin(B-C)+cos(B-D)sin(C-A)+cos(C-D)sin(A-B)=0

sin(A+B) =4/5 & sin(A-B) =3/5 Then 1+sin2A=