Home
Class 12
MATHS
If f(x) = (x)/(1+(log x)(log x)....oo), ...

If `f(x) = (x)/(1+(log x)(log x)....oo), AA x in [1, 3]` is non-differentiable at x = k. Then, the value of `[k^(2)]`, is (where `[*]` denotes greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

The domain of f(x)=log_(e)(4[x]-x) ; (where [1 denotes greatest integer function) is

If [log_2 (x/[[x]))]>=0 . where [.] denotes the greatest integer function, then :

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

The range of f(x)=(2+x-[x])/(1-x+[x]). where [1] denotes the greatest integer function is

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

The value of int_(-3)^(3)[ln(x+sqrt(1+x^(2)))]dx| is (where 1, denotes greatest imoger function)