Home
Class 11
MATHS
If tanx. tany=aand x + y =pi/6 then tanx...

If `tanx. tany=a`and `x + y =pi/6` then tanx and a satisfy the equation (a) `x^2-sqrt(3) (1-a) x+a=0` (b) `sqrt(3) x^2-(1-a)x+asqrt(3)=0` (c) `x^2+sqrt(3)(1+a)x-a=0` (d) `sqrt(3) x^2+(1+a)x-asqrt(3)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan x. tan y=a and x+y=(pi)/(6) then tanx and a satisfy the equation (a) x^(2)-sqrt(3)(1-a)x+a=0 (b) sqrt(3)x^(2)-(1-a)x+a sqrt(3)=0(c)x^(2)+sqrt(3)(1+a)x-a=0(d)sqrt(3)x^(2)+(1+a)x-a sqrt(3)=0

Solve: x^(2)-(sqrt(3)+1)x+sqrt(3)=0

x^(2)-(sqrt(3)+1)x+sqrt(3)=0 2x^(2)+x-4=0

x^2 - (sqrt 3 + 1) x + sqrt 3 = 0

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0

The value of x in (0,(pi)/(2)) satisfying the equation,(sqrt(3)-1)/(sin x)+(sqrt(3)+1)/(cos x)=4sqrt(2) is

Number of values of x, satisfying the equation (sqrt(3)+1)^(2)x+(sqrt(3)-1)^(2)x=2^(3)x, is equal to

Find the principal solutions of the following equations : (1) tanx=-sqrt(3) (2) sqrt(3)sec x+2=0 .

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

The values of x satisfying the equation (31+8sqrt(15))^(x^(2)-3)+1=(32+8sqrt(15))^(x^(2)-3) is/are (A) 3 (B) 0 (C) 2 (D) -2