Home
Class 12
MATHS
If f(x)=|ax-b|+c|x| is stricly increasin...

If `f(x)=|ax-b|+c|x|` is stricly increasing at atleast one point of non differentiability of the function where `a > 0, b > 0, c > 0` then (A) `c gt a` (B) `a gt c` (C) `b gt a+c` (D) a=b

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|ax-b|+c|x| is stricly increasing at atleast one point of non differentiability of the function where a>0,b>0,c>0 then (A) c>a( B) a>c(C)b>a+c(D)a=b

If a,b,c gt 0 then (a)/( a + b + c) = (b)/( a + b + c) = (c )/(a + b + c) = ?

If a,b,c gt 0, then (a )/(b +c) = (b)/( c +a) = (a)/(a +b) = ?

The least function value of function f(x) =ax + b/x (where, a gt 0, b gt 0, x gt 0 ) is ……………………

a = e gt b = d gt c

If a,b,c are in H.P, where a gt c gt 0, then :

If a,b,c gt 0, then (a )/(2a + b +c ) = (b)/(a + 2b +c)= (c )/(a +b + 2c) = ?

The function f(x)= log_(c) x , where c gt 0, x gt 0 is

The roots of the equation ax^2+bx + c = 0 will be imaginary if, A) a gt 0 b=0 c lt 0 B) a gt 0 b =0 c gt 0 (C) a=0 b gt 0 c gt 0 (D) a gt 0, b gt 0 c =0

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .