Home
Class 12
MATHS
If the greatest and least values of the ...

If the greatest and least values of the function `f(x)=arctan x-(1)/(2)ln x` on `[(1)/(sqrt(3)),sqrt(3)]` are `lambda` and `mu` respectively. Then
(A) `[lambda +mu]=1` where [.]= greatest Integer function
(B) `(lambda +mu)=2` where (.)= least Integer function
(C) `(lambda+mu)=0` where (.)= least Integer function
(D) `[lambda +mu]=-1` where [.]= greatest Integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

The function,f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If x^(2)+x+1-|[x]|=0, then (where [.] is greatest integer function) -

The domain of the function f(x)=(1)/([x^(2)-1] is (where [.] is greatest integer function)

The domain of the function f(x)=sin^(-1)[2x^(2)-3], where [.] is greatest integer function,is

If f(x)=[2x], where [.] denotes the greatest integer function,then

int_(0) ^(3) [x] dx= __________ where [x] is greatest integer function

The equation x^(3)-6x^(2)+9x+lambda=0 have exactly one root in (1,3) then [lambda+1] is (where [.] denotes the greatest integer function)

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Find range of the function f(x)=log_(2)[3x-[x+[x+[x]]]] (where [.] is greatest integer function)