Home
Class 12
MATHS
Let a ,b , c be the sides of a triangle,...

Let `a ,b , c` be the sides of a triangle, where `a!=b!=c` and `lambda in R` . If the roots of the equation `x^2+2(a+b+c)x+3lambda(a b+b c+c a)=0` are real. Then `lambda<4/3` b. `lambda>5/3` c. `lambda in (1/3,5/3)` d. `lambda in (4/3,5/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b,c be the sides of a triangle,where a!=b!=c and lambda in R. If the roots of the equation x^(2)+2(a+b+c)x+3 lambda(ab+bc+ca)=0 are real.Then a.lambda (5)/(3) c.lambda in((1)/(3),(5)/(3)) d.lambda in((4)/(3),(5)/(3))

Let a,b,c be the sides of a triangle. No two of them are equal and lambda in R If the roots of the equation x^2+2(a+b+c)x+3lambda(ab+bc+ca)=0 are real, then (a) lambda 5/3 (c) lambda in (1/5,5/3) (d) lambda in (4/3,5/3)

If a,b,c, are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots,then (a)lambda (5)/(3)(c)lambda in((4)/(3),(5)/(3)) (d) lambda in((1)/(3),(5)/(3))

For all lambda in R , The equation ax^2+ (b - lambda)x + (a-b-lambda)= 0, a != 0 has real roots. Then

If a,b,c are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots.then

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If a

If the points A(3, 9, 4), B(0, -1, -1), C(lambda, 4, 4), D(4, 5, 1) are coplanar, then lambda=

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0