Home
Class 12
MATHS
Prove that: cos^(-1)(x)+cos^(-1)"{"x/2...

Prove that: `cos^(-1)(x)+cos^(-1)"{"x/2+(sqrt(3-3x^2))/2"}"=pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/(sqrt(2))

Prove that: 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[(1)/(2),1]

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

Prove that cos^(-1)(3x-4x^3)=3cos^(-1)x,x in[1/2,1]

Prove that 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[(1)/(2),1]

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

Evaluate : cos^(-1)x+cos^(-1)[(x)/(2)+(sqrt(3-3x^(2)))/(2)]((1)/(2) le x le 1)