Home
Class 12
MATHS
Prove that, sin^(6)x + cos^(6)x = 1-3/4 ...

Prove that, `sin^(6)x + cos^(6)x = 1-3/4 sin^(2) 2x.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .

If sin x+cos x=a then prove that: sin^(6)x+cos^(6)x=1-(3)/(4)(a^(2)-1)^(2), where a^(2)<=2

If sin x+cos x=a, then prove that: sin^(6)x+cos^(6)x=1-(3)/(4)(a^(2)-1)^(2) where a^(2)<=2

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x

Prove that : sin^(2) 6x - sin^(2)4x = sin 2x *sin10x

Prove that cos^(2)2x-cos^(2)6x=sin4x.sin8x ?

Prove that: sin^(2)6x-sin^(2)4x=sin2x sin10x

Find the value of : 2 (sin^(6) x + cos^(6)x) - 3 (sin^(4) x + cos ^(4)x) + 2 .

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to